skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Piantadosi, Steven_T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We develop a mathematical approach to formally proving that certain neural computations and representations exist based on patterns observed in an organism's behaviour. To illustrate, we provide a simple set of conditions under which an ant's ability to determine how far it is from its nest would logically imply neural structures isomorphic to the natural numbers . We generalise these results to arbitrary behaviours and representations and show what mathematical characterisation of neural computation and representation is simplest while being maximally predictive of behaviour. We develop this framework in detail using a path integration example, where an organism's ability to search for its nest in the correct location implies representational structures isomorphic to two‐dimensional coordinates under addition. We also study a system for processing strings common in comparative work. Our approach provides an objective way to determine what theory of a physical system is best, addressing a fundamental challenge in neuroscientific inference. These results motivate considering which neurobiological structures have the requisite formal structure and are otherwise physically plausible given relevant physical considerations such as generalisability, information density, thermodynamic stability and energetic cost. 
    more » « less
  2. Abstract The study of how children learn numbers has yielded one of the most productive research programs in cognitive development, spanning empirical and computational methods, as well as nativist and empiricist philosophies. This paper provides a tutorial on how to think computationally about learning models in a domain like number, where learners take finite data and go far beyond what they directly observe or perceive. To illustrate, this paper then outlines a model which acquires a counting procedure using observations of sets and words, extending the proposal of Piantadosi et al. (2012). This new version of the model responds to several critiques of the original work and outlines an approach which is likely appropriate for acquiring further aspects of mathematics. 
    more » « less